Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.328
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1379962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655281

RESUMO

The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.


Assuntos
Retrovirus Endógenos , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Humanos , Animais , Diferenciação Celular , Interações Hospedeiro-Patógeno/genética , Interações entre Hospedeiro e Microrganismos/genética , Infecções por Retroviridae/virologia , Senescência Celular/genética , Provírus/genética , Provírus/fisiologia , Evolução Molecular
2.
Methods Mol Biol ; 2787: 209-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656492

RESUMO

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Assuntos
Basidiomycota , Coffea , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Coffea/microbiologia , Coffea/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Perfilação da Expressão Gênica/métodos , Mutação , Folhas de Planta/microbiologia , Folhas de Planta/genética , Interações Hospedeiro-Patógeno/genética
3.
Sci Rep ; 14(1): 9287, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653771

RESUMO

The Mycobacterium tuberculosis complex (MTBC) comprises nine human-adapted lineages that differ in their geographical distribution. Local adaptation of specific MTBC genotypes to the respective human host population has been invoked in this context. We aimed to assess if bacterial genetics governs MTBC pathogenesis or if local co-adaptation translates into differential susceptibility of human macrophages to infection by different MTBC genotypes. We generated macrophages from cryopreserved blood mononuclear cells of Tanzanian tuberculosis patients, from which the infecting MTBC strains had previously been phylogenetically characterized. We infected these macrophages ex vivo with a phylogenetically similar MTBC strain ("matched infection") or with strains representative of other MTBC lineages ("mismatched infection"). We found that L1 infections resulted in a significantly lower bacterial burden and that the intra-cellular replication rate of L2 strains was significantly higher compared the other MTBC lineages, irrespective of the MTBC lineage originally infecting the patients. Moreover, L4-infected macrophages released significantly greater amounts of TNF-α, IL-6, IL-10, MIP-1ß, and IL-1ß compared to macrophages infected by all other strains. While our results revealed no measurable effect of local adaptation, they further highlight the strong impact of MTBC phylogenetic diversity on the variable outcome of the host-pathogen interaction in human tuberculosis.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Filogenia , Tuberculose , Humanos , Tanzânia , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/microbiologia , Tuberculose/imunologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Adulto , Masculino , Feminino , Genótipo
4.
mSystems ; 9(4): e0020624, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38514462

RESUMO

Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE: Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.


Assuntos
Colite , Helicobacter pylori , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Antígenos de Bactérias/genética , Helicobacter pylori/genética , Transcriptoma/genética , Precursores de RNA/metabolismo , Interações Hospedeiro-Patógeno/genética , Análise de Sequência de RNA , RNA Mensageiro/metabolismo , Citotoxinas/metabolismo
5.
Nat Commun ; 15(1): 1933, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431601

RESUMO

Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.


Assuntos
Estudo de Associação Genômica Ampla , Adaptação ao Hospedeiro , Virulência/genética , Polimorfismo Genético , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
6.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473707

RESUMO

Influenza type A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Recently, a specific link between IAV infection and neurodegenerative disease progression has been established. The non-structural NS1 protein of IAV regulates viral replication during infection and antagonizes host antiviral responses, contributing to influenza virulence. In the present study, we have prepared a mouse lung-to-lung adapted to the NS1-truncated virus (NS80ad). Transcriptome analysis of the gene expression in the lungs revealed that infection with wild-type A/WSN/33 (WSN), NS80, and NS80ad viruses resulted in different regulation of genes involved in signaling pathways associated with the cell proliferation, inflammatory response, and development of neurodegenerative diseases. NS1 protein did not influence the genes involved in the RIG-I-like receptor signaling pathway in the brains. Lethal infection with IAVs dysregulated expression of proteins associated with the development of neurodegenerative diseases (CX3CL1/Fractalkine, Coagulation factor III, and CD105/Endoglin, CD54/ICAM-1, insulin-like growth factor-binding protein (IGFBP)-2, IGFBP-5, IGFBP-6, chitinase 3-like 1 (CHI3L1), Myeloperoxidase (MPO), Osteopontin (OPN), cystatin C, and LDL R). Transcription of GATA3 mRNA was decreased, and expression of MPO was inhibited in the brain infected with NS80 and NS80ad viruses. In addition, the truncation of NS1 protein led to reduced expression of IGFBP-2, CHI3L1, MPO, and LDL-R proteins in the brains. Our results indicate that the influenza virus influences the expression of proteins involved in brain function, and this might occur mostly through the NS1 protein. These findings suggest that the abovementioned proteins represent a promising target for the development of potentially effective immunotherapy against neurodegeneration.


Assuntos
Vírus da Influenza A , Influenza Humana , Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Vírus da Influenza A/genética , Imunidade Inata , Interações Hospedeiro-Patógeno/genética , Encéfalo
7.
J Med Microbiol ; 73(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314675

RESUMO

Introduction. Infection caused by Mycobacterium tuberculosis (M. tb) is still a leading cause of mortality worldwide with estimated 1.4 million deaths annually.Hypothesis/Gap statement. Despite macrophages' ability to kill bacterium, M. tb can grow inside these innate immune cells and the exploration of the infection has traditionally been characterized by a one-sided relationship, concentrating solely on the host or examining the pathogen in isolation.Aim. Because of only a handful of M. tb-host interactions have been experimentally characterized, our main goal is to predict protein-protein interactions during the early phases of the infection.Methodology. In this work, we performed an integrative computational approach that exploits differentially expressed genes obtained from Dual RNA-seq analysis combined with known domain-domain interactions.Results. A total of 2381 and 7214 genes were identified as differentially expressed in M. tb and in THP-1-like macrophages, respectively, revealing different transcriptional profiles in response to infection. Over 48 h of infection, the host-pathogen network revealed 25 016 PPIs. Analysis of the resulting predicted network based on cellular localization information of M. tb proteins, indicated the implication of interacting nodes including the bacterial PE/PPE/PE_PGRS family. In addition, M. tb proteins interacted with host proteins involved in NF-kB signalling pathway as well as interfering with the host apoptosis ability via the potential interaction of M. tb TB16.3 with human TAB1 and M. tb GroEL2 with host protein kinase C delta, respectively.Conclusion. The prediction of the full range of interactions between M. tb and host will contribute to better understanding of the pathogenesis of this bacterium and may provide advanced approaches to explore new therapeutic targets against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mapas de Interação de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Macrófagos , Análise de Sequência de RNA
8.
J Alzheimers Dis ; 97(3): 1111-1123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306057

RESUMO

BACKGROUND: Herpes simplex virus type 1 (HSV-1) is associated with Alzheimer's disease, which goes into a cycle of latency and reactivation. The present study was envisaged to understand the reasons for latency and specific molecular patterns present in the HSV-1. OBJECTIVE: The objective is the molecular dissection of Herpes simplex virus type 1 to elucidate molecular mechanisms behind latency and compare its codon usage patterns with genes modulated during Alzheimer's disease as a part of host-pathogen interaction. METHODS: In the present study, we tried to investigate the potential reasons for the latency of HSV-1 virus bioinformatically by determining the CpG patterns. Also, we investigated the codon usage pattern, the presence of rare codons, codon context, and protein properties. RESULTS: The top 222 codon pairs graded based on their frequency in the HSV-1 genome revealed that with only one exception (CUG-UUU), all other codon pairs have codons ending with G/C. Considering it an extension of host-pathogen interaction, we compared HSV-1 codon usage with that of codon usage of genes modulated during Alzheimer's disease, and we found that CGT and TTT are only two codons that exhibited similar codon usage patterns and other codons showed statistically highly significant different codon preferences. Dinucleotide CpG tends to mutate to TpG, suggesting the presence of mutational forces and the imperative role of CpG methylation in HSV-1 latency. CONCLUSIONS: Upon comparison of codon usage between HSV-1 and Alzheimer's disease genes, no similarities in codon usage were found as a part of host-pathogen interaction. CpG methylation plays an imperative role in latency HSV-1.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Uso do Códon , Doença de Alzheimer/genética , Interações Hospedeiro-Patógeno/genética , Herpes Simples/metabolismo
9.
BMC Genomics ; 25(1): 56, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216891

RESUMO

The genomes of species belonging to the genus Colletotrichum harbor a substantial number of cytochrome P450 monooxygenases (CYPs) encoded by a broad diversity of gene families. However, the biological role of their CYP complement (CYPome) has not been elucidated. Here, we investigated the putative evolutionary scenarios that occurred during the evolution of the CYPome belonging to the Colletotrichum Graminicola species complex (s.c.) and their biological implications. The study revealed that most of the CYPome gene families belonging to the Graminicola s.c. experienced gene contractions. The reductive evolution resulted in species restricted CYPs are predominant in each CYPome of members from the Graminicola s.c., whereas only 18 families are absolutely conserved among these species. However, members of CYP families displayed a notably different phylogenetic relationship at the tertiary structure level, suggesting a putative convergent evolution scenario. Most of the CYP enzymes of the Graminicola s.c. share redundant functions in secondary metabolite biosynthesis and xenobiotic metabolism. Hence, this current work suggests that the presence of a broad CYPome in the genus Colletotrichum plays a critical role in the optimization of the colonization capability and virulence.


Assuntos
Colletotrichum , Colletotrichum/genética , Colletotrichum/metabolismo , Filogenia , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Hospedeiro-Patógeno/genética , Genoma
10.
BMC Plant Biol ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163897

RESUMO

BACKGROUND: Understanding how plants and pathogens regulate each other's gene expression during their interactions is key to revealing the mechanisms of disease resistance and controlling the development of pathogens. Despite extensive studies on the molecular and genetic basis of plant immunity against pathogens, the influence of pitaya immunity on N. dimidiatum metabolism to restrict pathogen growth is poorly understood, and how N. dimidiatum breaks through pitaya defenses. In this study, we used the RNA-seq method to assess the expression profiles of pitaya and N. dimidiatum at 4 time periods after interactions to capture the early effects of N. dimidiatum on pitaya processes. RESULTS: The study defined the establishment of an effective method for analyzing transcriptome interactions between pitaya and N. dimidiatum and to obtain global expression profiles. We identified gene expression clusters in both the host pitaya and the pathogen N. dimidiatum. The analysis showed that numerous differentially expressed genes (DEGs) involved in the recognition and defense of pitaya against N. dimidiatum, as well as N. dimidiatum's evasion of recognition and inhibition of pitaya. The major functional groups identified by GO and KEGG enrichment were responsible for plant and pathogen recognition, phytohormone signaling (such as salicylic acid, abscisic acid). Furthermore, the gene expression of 13 candidate genes involved in phytopathogen recognition, phytohormone receptors, and the plant resistance gene (PG), as well as 7 effector genes of N. dimidiatum, including glycoside hydrolases, pectinase, and putative genes, were validated by qPCR. By focusing on gene expression changes during interactions between pitaya and N. dimidiatum, we were able to observe the infection of N. dimidiatum and its effects on the expression of various defense components and host immune receptors. CONCLUSION: Our data show that various regulators of the immune response are modified during interactions between pitaya and N. dimidiatum. Furthermore, the activation and repression of these genes are temporally coordinated. These findings provide a framework for better understanding the pathogenicity of N. dimidiatum and its role as an opportunistic pathogen. This offers the potential for a more effective defense against N. dimidiatum.


Assuntos
Cactaceae , Reguladores de Crescimento de Plantas , Transcriptoma , Cactaceae/genética , Interações Hospedeiro-Patógeno/genética , Resistência à Doença/genética , Redes e Vias Metabólicas , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
11.
Evolution ; 78(1): 69-85, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37891007

RESUMO

In this study, we investigated how an emerging RNA virus evolves, interacts, and adapts to populations of a novel host species with defects in epigenetically controlled plant defense mechanisms. Mutations in epigenetic regulatory pathways would exert different effects on defense-response genes but also induce large-scale alterations in cellular physiology and homeostasis. To test whether these effects condition the emergence and subsequent adaptation of a viral pathogen, we have evolved five independent lineages of a naive turnip mosaic virus (TuMV) strain in a set of Arabidopsis thaliana genotypes carrying mutations that influence important elements of two main epigenetic pathways and compare the results with those obtained for viral lineages evolved in wild-type plants. All evolved lineages showed adaptation to the lack of epigenetically regulated responses through significant increases in infectivity, virulence, and viral load although the magnitude of the improvements strongly depended on the plant genotype. In early passages, these traits evolved more rapidly, but the rate of evolution flattened out in later ones. Viral load was positively correlated with different measures of virulence, though the strength of the associations changed from the ancestral to the evolved viruses. High-throughput sequencing was used to evaluate the viral diversity of each lineage, as well as characterizing the nature of fixed mutations, evolutionary convergences, and potential targets of TuMV adaptation. Within each lineage, we observed a net increase in genome-wide genetic diversity, with some instances where nonsynonymous alleles experienced a transient rise in abundance before being displaced by the ancestral allele. In agreement with previous studies, viral VPg protein has been shown as a key player in the adaptation process, even though no obvious association between fixed alleles and host genotype was found.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interações Hospedeiro-Patógeno/genética , Potyvirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Genômica , Epigênese Genética , Doenças das Plantas/genética
12.
Brief Funct Genomics ; 23(1): 69-74, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36722037

RESUMO

The entire world is facing the stiff challenge of COVID-19 pandemic. To overcome the spread of this highly infectious disease, several short-sighted strategies were adopted such as the use of broad-spectrum antibiotics and antifungals. However, the misuse and/or overuse of antibiotics have accentuated the emergence of the next pandemic: antimicrobial resistance (AMR). It is believed that pathogens while transferring between humans and the environment carry virulence and antibiotic-resistant factors from varied species. It is presumed that all such genetic factors are quantifiable and predictable, a better understanding of which could be a limiting step for the progression of AMR. Herein, we have reviewed how genomics-based understanding of host-pathogen interactions during COVID-19 could reduce the non-judicial use of antibiotics and prevent the eruption of an AMR-based pandemic in future.


Assuntos
COVID-19 , Humanos , Pandemias , Interações Hospedeiro-Patógeno/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos/genética , Genômica , Farmacorresistência Bacteriana
13.
Subcell Biochem ; 106: 365-385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159234

RESUMO

RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.


Assuntos
Interações entre Hospedeiro e Microrganismos , RNA Viral , RNA Viral/genética , RNA Viral/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Interações Hospedeiro-Patógeno/genética , Replicação Viral
14.
PeerJ ; 11: e16339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953771

RESUMO

Pathogens have evolved sophisticated strategies to manipulate host signaling pathways, including the phenomenon of molecular mimicry, where pathogen-derived biomolecules imitate host biomolecules. In this study, we resurrected, updated, and optimized a sequence-based bioinformatics pipeline to identify potential molecular mimicry candidates between humans and 32 pathogenic species whose proteomes' 3D structure predictions were available at the start of this study. We observed considerable variation in the number of mimicry candidates across pathogenic species, with pathogenic bacteria exhibiting fewer candidates compared to fungi and protozoans. Further analysis revealed that the candidate mimicry regions were enriched in solvent-accessible regions, highlighting their potential functional relevance. We identified a total of 1,878 mimicked regions in 1,439 human proteins, and clustering analysis indicated diverse target proteins across pathogen species. The human proteins containing mimicked regions revealed significant associations between these proteins and various biological processes, with an emphasis on host extracellular matrix organization and cytoskeletal processes. However, immune-related proteins were underrepresented as targets of mimicry. Our findings provide insights into the broad range of host-pathogen interactions mediated by molecular mimicry and highlight potential targets for further investigation. This comprehensive analysis contributes to our understanding of the complex mechanisms employed by pathogens to subvert host defenses and we provide a resource to assist researchers in the development of novel therapeutic strategies.


Assuntos
Interações Hospedeiro-Patógeno , Mimetismo Molecular , Humanos , Interações Hospedeiro-Patógeno/genética , Bactérias/metabolismo , Proteoma/química , Biologia Computacional
15.
Viruses ; 15(10)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37896840

RESUMO

The Influenza A virus is a continuous threat to public health that causes yearly epidemics with the ever-present threat of the virus becoming the next pandemic. Due to increasing levels of resistance, several of our previously used antivirals have been rendered useless. There is a strong need for new antivirals that are less likely to be susceptible to mutations. One strategy to achieve this goal is structure-based drug development. By understanding the minute details of protein structure, we can develop antivirals that target the most conserved, crucial regions to yield the highest chances of long-lasting success. One promising IAV target is the virulence protein non-structural protein 1 (NS1). NS1 contributes to pathogenicity through interactions with numerous host proteins, and many of the resulting complexes have been shown to be crucial for virulence. In this review, we cover the NS1-host protein complexes that have been structurally characterized to date. By bringing these structures together in one place, we aim to highlight the strength of this field for drug discovery along with the gaps that remain to be filled.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Imunidade Inata , Replicação Viral/genética , Interferons/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Proteínas não Estruturais Virais/metabolismo , Interações Hospedeiro-Patógeno/genética
16.
Biomed Res Int ; 2023: 6638714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854792

RESUMO

Hackathons are collaborative events that bring together diverse groups to solve predefined challenges. The COVID-19 pandemic caused by SARS-CoV-2 has emphasized the need for portable and reproducible genomics analysis pipelines to study the genetic susceptibility of the human host and investigate human-SARS-CoV-2 protein interactions. To build and strengthen institutional capacities in OMICS data analysis applied to host-pathogen interaction (HPI), the PHINDaccess project organized two hackathons in 2020 and 2021. These hackathons are aimed at developing bioinformatics pipelines related to the SARS-CoV-2 viral genome, its phylodynamic transmission, and the identification of human genome host variants, with a focus on addressing global health challenges, particularly in low- and middle-income countries (LMIC). This paper outlines the preparation, proceedings, and lessons learned from these hackathons, including the challenges faced by participants and our recommendations based on our experience for organizing hackathons in LMIC and beyond.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Países em Desenvolvimento , Pandemias , Interações Hospedeiro-Patógeno/genética
17.
Nat Commun ; 14(1): 6030, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758692

RESUMO

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Proteômica , Replicação Viral/genética , SARS-CoV-2 , Antivirais/metabolismo , Interações Hospedeiro-Patógeno/genética
18.
Front Immunol ; 14: 1224591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575232

RESUMO

Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.


Assuntos
Toxoplasma , Animais , Camundongos , Macrófagos , Interações Hospedeiro-Patógeno/genética
19.
Mol Plant Microbe Interact ; 36(12): 764-773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581456

RESUMO

Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética
20.
Virol Sin ; 38(5): 699-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543144

RESUMO

Long noncoding RNAs (lncRNAs) modulate many aspects of biological and pathological processes. Recent studies have shown that host lncRNAs participate in the antiviral immune response, but functional lncRNAs in coxsackievirus B5 (CVB5) infection remain unknown. Here, we identified a novel cytoplasmic lncRNA, LINC1392, which was highly inducible in CVB5 infected RD cells in a time- and dose-dependent manner, and also can be induced by the viral RNA and IFN-ß. Further investigation showed that LINC1392 promoted several important interferon-stimulated genes (ISGs) expression, including IFIT1, IFIT2, and IFITM3 by activating MDA5, thereby inhibiting the replication of CVB5 in vitro. Mechanistically, LINC1392 bound to ELAV like RNA binding protein 1 (ELAVL1) and blocked ELAVL1 interaction with MDA5. Functional study revealed that the 245-835 â€‹nt locus of LINC1392 exerted the antiviral effect and was also an important site for ELAVL1 binding. In mice, LINC1392 could inhibit CVB5 replication and alleviated the histopathological lesions of intestinal and brain tissues induced by viral infection. Our findings collectively reveal that the novel LINC1392 acts as a positive regulator in the IFN-I signaling pathway against CVB5 infection. Elucidating the underlying mechanisms on how lncRNA regulats the host innate immunity response towards CVB5 infection will lay the foundation for antiviral drug research.


Assuntos
Interferon Tipo I , RNA Longo não Codificante , Animais , Camundongos , Enterovirus Humano B/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Interferon Tipo I/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...